

Variance reduction using a non-informative sampling design

Thomas Zimmermann Destatis – Division of Mathematical-Statistical Methods & Research Data Centre

IAOS Conference 2016, Abu Dhabi, December 6th – 8th

Status Quo in Official Statistics

- Conduct sample surveys by means of probability sampling
- Use design-based methods to produce estimates
- Procedure yields unbiased estimates by construction
- Very useful approach provided sample sizes are large
- Limitations: budget constraints, estimates for subgroups

Challenges for Official Statistics

- Data users struggle with survey weights
 - Many researchers simply run unweighted analysis
 - May lead to erroneous results due to informative sampling
- Official statistics started to move towards model-based methods, where incorporation of weights can be challenging
 - Small area estimation
 - Imputation

Aim of this contribution

Find a sampling method, which

- 1. enables precise design-based estimates for aggregates
- 2. is suitable for the application of model-based procedures
- 3. and is easy to communicate.

Notation

- Population U = {1, ..., k, ..., N}
- Sample $S \subset U$ of size n
- Variable of interest y with values (y₁, ..., y_k, ..., y_N), known for sampled elements only
- Size variable z, with values (z₁, ..., z_k, ..., z_N) that are known for all units in the population
- *D* mutually exclusive domains (or areas) $U_d \subset U, d = 1, ..., D$ with domain sizes N_d
- Estimate population mean: $\mu = \frac{1}{N} \sum_{k \in S} y_k$ or area mean: $\mu_d = \frac{1}{N_d} \sum_{k \in S_d} y_k$

Antithetic Clustering (ATC)

- 1. Order the elements according to the size variable.
- 2. Assign largest and smallest unit to the first cluster.
- 3. Now assign second largest and second smallest unit to the next cluster.
- 4. Repeat procedure until all units are assigned to a cluster. This yields $L = \lfloor N/2 \rfloor$ clusters.
- Draw l > 1 out of L clusters by means of a simple random sample.

Note: All units have the same inclusion probability, hence no bias due to informative sampling.

When does ATC work?

- Approach is based on cluster sampling
- Cluster sampling reduces the variance, if units from the same cluster are less similar than units from different clusters
- This is exactly what our method does for the size variable
- Further prerequisite: the size variable should be correlated with the variable of interest

Simulation study

- Comparison of ATC and SRS for mean estimates using design-based estimators (Direct and GREG estimator) and model-based small area estimator (BHF estimator)
- **Population with** N = 12000 **units and** D = 30 **areas**
- Sample size n = 500 in each of the 10000 replications
- Apply ATC and SRS on population level → random sample sizes in domains
- Population constructed as:

$$y_k = 6 + 3 \cdot z_k + v_d + \varepsilon_k, \quad k \in U_d$$

$$v_d \sim N(0,2), \varepsilon_k \sim N(0,4), z_k \sim N(1,1)$$

Quality measures

- RB relative bias
- AARB average absolute relative bias
- RRMSE relative root mean squared error
- ARRMSE average relative root mean squared error
- ACR average 95% confidence interval coverage rate

Results for domain estimates

		Direct		GREG		BHF	
	$E(n_d)$	AARB	ARRMSE	AARB	ARRMSE	AARB	ARRMSE
ATC	< 10	0.004	0.463	0.018	0.168	0.051	0.092
	10-30	0.002	0.259	0.000	0.059	0.013	0.050
	>30	0.001	0.161	0.001	0.035	0.004	0.031
	< 10	0.005	0.465	0.019	0.169	0.051	0.092
SRS	10-30	0.002	0.259	0.000	0.059	0.012	0.049
	>30	0.002	0.161	0.001	0.035	0.004	0.031

© Destatis| Division of Mathematical-Statistical Methods & Research Data Centre

Results for national estimates

		Direct		GREG			
	RB	RRMSE	ACR	RB	RRMSE	ACR	
ATC	-0.0001	0.0105	0.9493	-0.0001	0.0105	0.9490	
SRS	-0.0002	0.0173	0.9529	-0.0001	0.0106	0.9473	

Conclusion

- ATC yields variance reductions compared to SRS and does not interfere with models
- It permits an unbiased variance estimation
- It is easy to implement and does not require more information than other approaches to variance reduction
- Could be extended to account for multiple size variables

Thank you very much for your attention!