Accessing corporate data: are PPP's the solution for closing SDG data gaps?

Johannes Jütting

Manager, PARIS21 Secretariat

Development in the 21st Century

3 mistaken assumptions about PARIS21

A

We are in the 21st arrondissement of Paris

We are connected to COP21

We were founded in 1921

Who we are

A global partnership of institutions and countries which promotes the better use and production of statistics in developing countries

Outline

- 1. Introduction PPPs for data
- 2. The pros and cons
- 3. Business models to access corporate data
- 4. Emerging solutions to overcome incentive problems
- 5. Conclusion and the way forward

Motivation

SDG implementation and data gaps:

- Important data gaps quality, timelines, granularity and interoperability
- Partnerships as a solution ...but
- ... access as big problem...

Question:

Can PPP's help to facilitate access to private data?

Emerging literature on PPPs for data

- Robin, Klein and Jütting (2016): generic types of PPPs
- Ballivian and Hoffman (2015): taxonomy of risks and benefits of data sharing
- OECD/PARIS21 (2017): Access to new data sources for statistics (forthcoming)
- Events/Reports specific to telecom data
 - Eurostat (2014) Feasibility Study on the Use of Mobile Positioning Data for Tourism Statistics
 - UNECA 2015 conference on the "Use of mobile technology for statistical processes"
 - Meersman et al. (2016) on "win-win" partnership between MNO Proximus and Statistics Belgium

What are PPP's in statistics?

- Public-Private Partnerships for Statistics:
 - Voluntary, collaborative agreement
 - aimed at increasing an NSS' capacity to provide new or better statistics.
- Distinguishing features:
 - 1. Long-term agreement that defines concrete roles, responsibilities & rights
 - 2. Central role of proprietary and privacy risks
 - 3. Can cover any stage of "data value chain"

2. The pros and cons

Corporate Data from an NSO perspective

Web crawling,/ So web scraping/ web m search analysis

Social media **Telecom data**

Sensor and geospatial data

Commercial transactions (scanner data, credit card data)

And combinations of these, also with established source such as censuses, surveys, administrative records

Corporate data for SDGs

Mobile phone data 20 Satellite imagery data... 18 Other social networks 12 Web data 12 Scanner data 11 Twitter data 11 Financial transaction... 11 Facebook data 8 Sensor data 6 Smart meter data 5 0 5 10 15 20 25

Source: PARIS21 et al. (2015). Global Survey on Big Data projects for SDGs.

Feature that indicator Projects by type of data source

improves on

9

Benefits & Complementarities

- For existing statistics
 - Cost effectiveness
 - Timeliness
 - Granularity
- In new areas
 - Data in new areas
 - Increased responsiveness e.g crisis situation

Risks & Challenges

- Access
- Incentives and sustainability
- Privacy and ethics
- Technical and statistical challenges

3. Business Models

	Description and key characteristics	Long term view	Examples of stakeholders
In-house production of statistics	 Telecom operators compute and "sell" key aggregates based on own algorithms and data 	 Limited scalability because of need to understand each end- user's requirements 	 Orange, Telefonica, Proximus
Send data to end-users	 Telecom operators send data to end- users. 	 Difficult to scale up as risks are too high 	 Ad-hoc analyses in case of natural disaster, research projects (e.g. Orange with D4D)
Trusted third party	 Private or public party hosting aggregated data Requires setting up the governance, e.g. standard data format, access 	 Allow broad access to aggregate data 	 Some players (e.g. Positium) go into that direction

Positium

- Positium as third-party aggregator/distributor
 - MNO has commercial contract with a third party aggregator responsible for distribution of the data
 - Fixed price / rev-sharing agreements

Business Models

	Description and key characteristics	Long term view	Examples of stakeholders
In-house production of statistics	 Telecom operators compute and "sell" key aggregates based on own algorithms and data 	 Limited scalability because of need to understand each end- user's requirements 	 Orange, Telefonica, Proximus
Send data to end-users	 Telecom operators send data to end- users. 	 Difficult to scale up as risks are too high 	 Ad-hoc analyses in case of natural disaster, research projects (e.g. Orange with D4D)
Trusted third party	 Private or public party hosting aggregated data Requires setting up the governance, e.g. standard data format, access 	 Allow broad access to aggregate data 	 Some players (e.g. Positium) go into that direction
Remote access	 Users develop their algorithms within the corporate systems 	Allow broad access to individual data	• RIA, Flowminder

Flowminder

Source: Flowminder 15

Flowminder (cont'd)

Nepal 2015 earthquake:

- Data access/analysis within 14 days
- Information on above • normal population flows
- Life-saving information for disaster response

Business Models

	Description and key characteristics	Long term view	Examples of stakeholders
In-house production of statistics	 Telecom operators compute and "sell" key aggregates based on own algorithms and data 	 Limited scalability because of need to understand each end- user's requirements 	 Orange, Telefonica, Proximus
Send data to end-users	 Telecom operators send data to end- users. 	 Difficult to scale up as risks are too high 	 Ad-hoc analyses in case of natural disaster, research projects (e.g. Orange with D4D)
Trusted third party	 Private or public party hosting aggregated data Requires setting up the governance, e.g. standard data format, access 	 Allow broad access to aggregate data 	 Some players (e.g. Positium) go into that direction
Remote access	 Users develop their algorithms within the corporate systems 	 Allow broad access to individual data 	• RIA, Flowminder
Move algorithms	 Users develop publicly available algorithms and extract results from corporate system 	 Allow broad access to 1st layer algorithms 	 OPAL, e.g. Orange, universities/research institutes

4. Corporate sector incentives

- What does it take for "win-win" partnerships?
- NSO incentives
 - data access to produce statistics
 - operators can provide: technical expertise, data storage, processing infrastructure and use cases
- MNO incentives
 - increase commercial value of MNO data from collaboration with NSO and geocoded NSO data
 - statistical and domain expertise of NSOs
 - Corporate social responsibility (public good)

Proximus and Statistics Belgium

Estimates of population density per km² for Belgium Rho = 0.85

Based on mobile phone data

Based on 2011 Census

5. Conclusion

- Establishing PPPs holds promises and caveats no miracles to be expected
- Critical question: PPP for what? profit vs. CSR vs. true "win-win" partnership
- Our survey shows: In developing countries, most business models rely on ad-hoc data exchange
- To be scalable for official statistics, need to create a standardised safe environment for sharing data

The way forward

- Define a decision tree to inform the choice of business models dependent on context, intended use and data type
- Corporate data access is facilitated by "data stewards" that act as a first point of contact
- Harnessing the potential and engaging with other actors requires new skills from all actors involved – "capacity development 4.0"

PARIS21 Secretariat OECD/STD 46 Quai Alphonse le Gallo, 92100 Boulogne-Billancourt, France contact@paris21.org www.paris21.org

@ContactPARIS21

ContactPARIS21

www.soundcloud.com/paris21-datatalk

www.youtube.com/user/PARIS210ECD