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Statistical registers by restricted neighbor imputation –  
an application to the Norwegian Agriculture Survey 

Nina Hagesæther1 and Li-Chun Zhang. Statistics Norway. 

Abstract 
In this paper we implement the method of Zhang and Nordbotten (2008) for constructing a statistical 
register by the use of neighbor-imputation with restriction (RENI). Empirical results from the 
Norwegian Agriculture Survey are shown, and further research on the topic is discussed. 

1 Introduction 
Based on a survey, one may want to estimate the population total or mean for several variables. To use 
available data more efficiently, we can combine data from administrative sources and statistical 
surveys. A way to do this is to use a sample survey with target variables and an administrative register 
with auxiliary variables and construct survey weights for the sample units. This method is common in 
statistical production at the National Statistical Institutes. An alternative approach is to predict the 
values of the target variables for every unit outside the sample and construct a statistical register. 
Statistical tables will then be constructed based on all the population units, each of them having the 
weight equal to one. If one assumes that the probability of non-response is conditionally independent 
of the variable of interests given the auxiliary variables, the non-respondent units in the sample can be 
predicted in the same way as units outside the sample. 

Zhang and Nordbotten (2008) proposed three goals they would like to achieve in constructing a 
statistical register: 

1. It should yield efficient estimates of population totals of interest. 

2. It should contain correct co-variances among the survey variables, as well as between the 
survey and auxiliary variables. 

3. It should be non-stochastic, such that the statistics can be reproduced on repetition. 

The first goal is traditionally associated with the production of statistical tables. The second one is a 
natural requirement now that a statistical register is a complete micro-data file. The last condition is 
important for the acceptability and face-value in official statistics: i.e. if a procedure is repeated, the 
results should be exactly the same. In the paper they present a table where common imputation 
methods are classified with respect to the triple-goal criterion: 
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Table 1: Triple-goal classification of common imputation methods, from Zhang and Nordbotten (2008). 

Method (1) (2) (3)
Regression Prediction Not always No Yes
Random regression imputation No No, if multivariate No
Multiple Imputation Not always No, if multivariate No
Predictive mean matching Not always No, if multivariate Yes, in theory
Artificial Neural Network Usually not No, if categorical Yes
Nearest neighbor imputation Usually not Yes, non-parametric Yes, in theory  

Nearest neighbor imputation (NNI) emerges as the only practical approach in terms of preserving the 
co-variances among all the variables. It is therefore a principal method for the construction of a 
statistical register. Consider the simple situation with a sample 1 1( ) ,..., ( )r rx , x ,y y  where iy  is a 

vector of all target variables known for the respondents r , 1 i r≤ ≤ , and all x -values are observed. 
The NNI method imputes jy  by iy , where 1r j N+ ≤ ≤  and N  is the number of units in the 

population, and i  satisfies 

1i j l jl r
| x x | min | x x |

≤ ≤
− = −  

and |.| denotes the chosen distance metric. In the case of multiple nearest neighbors, the donor i  is 
randomly selected as one of them. Chen and Shao (2000) showed that NNI yields asymptotically 
consistent estimators of the population totals as well as the finite population distributions of interest. 
However, their empirical results also indicate that the method is often not efficient. 

Zhang and Nordbotten suggested a new approach called RENI (restricted neighbor imputation), by 
imposing restrictions in the imputed totals, which may be obtained separately from the NNI such as 
through a regression prediction. A simple modification is introduced in order to make the NNI non-
stochastic, and additional neighbors are included as potential donors, not only the nearest.  

In section 2, the algorithm for the RENI approach is described. In section 3, we show empirical results 
where RENI is applied to real data from the Norwegian Agriculture Survey. In section 4 we discuss 
some further work that we have planned. 

2 Algorithm for RENI 
The algorithm to produce a RENI based statistical register in Zhang and Nordbotten (2008) is 
described as follows. 

The jump-start (JS) phase Denote by R the set of receivers. Denote by D  the set of donors. Let ix  
be the variable (or variables) based on which the distance metric (and the NNI) is defined. 

1. Set the counter id = 0 for all i D∈ . 

2. For each j R∈ : 

a) Let jm  be the number of nearest neighbor (NN) donors, where 1jm ≥ . 

b) For each NN-donor, increase its counter id  by 1 j/ m . 
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3. Let 0
RY  denote the column vector of marginal restrictions for the receivers. Let iy  be the 

corresponding vector of variables for i D∈ . Put                

0 1      and      1' T
i i i i R R id d g g (Y Y ) A y−= = + − %%  

where R i ii D
Y d y

∈
=∑%  and T

i i ii D
A d y y

∈
=∑% . It is easily verified that 0'

i i Ri D
d y Y

∈
=∑ . 

4. Let '
i i id a u= + , where ia  is the largest integer that satisfies i ia d≤ . Sort the receivers in the 

increasing order of jm . For 1j ,...,| R |= : 

a) Find the first NN donor i  with 1ja ≥ . Impute *
j iy y= , and decrease ia  by 1. 

b) Do nothing if there is no NN-donor with positive ia . 

The fine-tune (FT) phase Denote by 'R  the remaining set of receivers that have not yet been 
imputed. Extend ix  to '

ix  so that for each j R'∈  there is now a unique ordering among the potential 

donors by ix  and, some additional information iz . For instance, iz  can be the post zip code, the 

identification number of unit, and so on. Notice that iz  is not considered informative. The unique 
ordering ensures that the procedure is non-stochastic. 

1. Set k =1. For each j R'∈ , find the NN-donor i  and set *
j iy y= . Let 1Δ  be the distance 

between 0 0 *
R' R jj R\R'

Y Y y
∈

= −∑  and 1
* *
R';k jj R'

Y y= ∈
=∑  according to some chosen metric. 

2. Set k =2. For j R'∈ , let 2j ;kD =  contain its two closest NN-donors. 

a) For each j R'∈ , find the NN-donor i  and set *
jI i= . 

b) For 1j ,...,| R' |= , set *
jI i=  for 2j ;ki D =∈  that yields a closer imputed total to 0

R'Y . 

c) Repeat step 2b until no changes can be made. Calculate 2Δ  between 0
R'Y  and 2

*
R';kY = . 

3. Stop if 2Δ = 0, and use the imputations from Step 2. Otherwise, stop if 2 1Δ ≥ Δ , and use the 

imputation from Step 1. Otherwise, set k = 3 and let 3j ;kD =  contain the three closest NN-

donors for j R'∈ . 

a) For each j R'∈ , find the NN-donor i  and set *
jI i= . 

b) For 1j ,...,| R' |= , set *
jI i=  for 3j ;ki D =∈  that yields a closer imputed total to 0

R'Y . 

c) Repeat step 3b until no changes can be made. Calculate 3Δ  between 0
R'Y  and 3

*
R';kY = . 

4. Stop if 3Δ = 0, and use the imputations from Step 3. Otherwise, stop if 3 2Δ ≥ Δ , and use the 

imputation from Step 2. Otherwise, set k = 4 and let 4j ;kD =  contain the four closest NN-

donors for j R'∈ … 
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The following observations are worth noting: 

• The JS is designed to speed up the process. 0
RY  may consist of optional target variables.  

• At each iteration of the FT phase the donor is the one among the k  nearest neighbors that best 
satisfies the restrictions. The consistency of the NNI remains, as long as the difference 
between the conditional expectations of a unit and its k -th nearest neighbor is bounded by the 
‘distance’ between them through a finite constant. 

• Deviation from the marginal restrictions of the imputed totals can be reduced in two ways. 
Firstly, one may increase k  to allow for greater combinatorial flexibility. Secondly, one may 
reduce the amount of imputations achieved by the JS, or even skipping completely over it. 

• In constructing Δ , one can put a larger weight on the target variables that are considered more 
important. In return these will be closer to the restriction, on the expense of the other variables 
considered less important.  The weight is called variable-weight and denoted by W.   

• If one wants to introduce restrictions on a more detailed level than the imputation class, this 
can be incorporated in the algorithm. 0

RY  can be extended to include sub-populations of the 

imputation class, and the Δ  can be calculated also with respect to the sub-populations. A 
weight between 0 and 1, called marginal weight and denoted by W’, may be included, to 
balance between the imputation class total and the sub-population total. If W’ = 0, no sub-
population totals are included in Δ , and if W’ = 1, only sub-population totals are included. 

3 Empirical results 
We have tested RENI on the Norwegian Agriculture Survey 2006.  

Agriculture Survey 2006. There are 10206 responding units which are the donors. There are 40993 
non-responding and out-of-sample units which are the receivers. The Agriculture Survey 2006 has 84 
variables of interest: 42 of them are size variables and the other 42 are indicator variables depending 
on whether the size is positive. Leasing, investment and maintenance were the most important topics 
including the following variables, all given in Norwegian kroner (VAT excluded): 

• Leasing: leasing (paid leasing rent for machines), leasing1 (value of new leasing contract, 
contract 1) and leasing2 (value of new leasing contract, contract 2). 

• Investment: i_fixed (sum invested in fixed technical equipment in outbuildings), i_build (sum 
invested in outbuildings), mach_new (purchase of other new machines and tools) and 
mach_used (purchase of other used machines and tools). We have also included sale_mach 
(sales of other machines and tools). 

• Maintenance: m_build (maintenance of buildings and fixed equipment), m_tractor 
(maintenance of tractors and combine harvesters), m_car (maintenance of cars and trucks) and 
m_mach (maintenance of machines and tools). 
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Estimated numbers are published at the following classification levels:  

• Farming system/activity (FA): 1=grain and oilseed crops, 2=other agricultural crops, 3=garden 
crops, 4=cattle, milk production, 5=cattle, meat production, 6=cattle, milk and meat 
production, 7=sheep, 8=other roughage animals, 9=swine and poultry, 10=mixed crop 
production,  11=mixed farm animal production, 12=crop and farm animal production 

• Class of farmland in decares: 1=0-4, 2=5-49, 3=50-99, 4=100-199, 5=200-499 and 6=500+ 

• County 

The imputation class is FA. This means that receivers can only get a donor with the same farming 
activity. Due to limited space we show only results four different imputation classes: 

• FA-2: 2660 receivers and 727 donors. The sample fraction is about the same as for the whole 
population, and the proportion of receivers is about average. 

• FA-4: 9984 receivers and 3296 donors. This is the largest imputation class in this study. 

• FA-10: 384 receivers and 243 donors. This is the smallest imputation class in this study, with a 
high sampling fraction above 60 percent. 

• FA-11: 586 receivers and 340 donors. This is another one of the smallest imputation classes.  

The variable used to find the nearest neighbor within each imputation class is farmland in decares and 
an identity number of the farms, where the latter of which is non-informative. The restrictions are the 
published totals of each imputation class, obtained by stratified ratio estimation. 

3.1 Performance in satisfying the restrictions 
First we examine how well the algorithm is able to satisfy the imposed restrictions. This is important 
in order to realize the efficiency goal. 

Figure 1 below shows the effect of k  on Δ , where Δ  is calculated as the un-weighted sum of relative 
differences between the restriction and the imputed class total for all variables.  Recall that k =1 
means that only the nearest neighbor may be the donor, k =2 means that the donor may be selected 
among the two nearest neighbors, and so on. It is seen that Δ  decreases rapidly as k increases from 1 
to 3, and there is basically no change in Δ  beyond k =6.  

Figure 1: How ∆ varies with k, for farming activities (FA) 2, 4 10 and 11. 
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We examine next how the JS affects the computation time. Five different scenarios of the JS phase 
where used, varying from no JS at all to JS with respect to all variables of interest. The results are 
summarized in Table 2 - 5, where ∆ is the same as above. We notice that the number of units that is 
left for the FT phase depends mostly on whether the JS is employed or not, but less on the exact 
restrictions used in the JS phase. The computation time depends on number of iterations and number 
of receivers at the FT phase. Twice as many receivers, or twice as many iterations, takes about twice 
as long time --- the relationship is linear as shown in Figure 2. Since the number of iterations does not 
seem to depend on the JS at all, the JS can significantly reduce the computation time for large 
imputation classes such as FA-4. Meanwhile, the restrictions in the JS do affect the final ∆. Generally, 
it seems that the size variables more readily put the JS in the right direction, and using all the 
restrictions at the JS achieves the best fitting of the final imputed totals. In conclusion, the JS 
performed as intended, and using all the restrictions at the JS yielded final imputation totals that were 
basically as good as without the JS at all. The latter option requires of course much more computation 
time in large imputation classes. 

Table 2: Shows how ∆ and computation time depend on restrictions and number of units in the fine-tune 
phase. JS = jump-start, FT = fine-tune. Farming activity 2. 

Seconds Iterations ∆, k=6 ∆, k=1 Restrictions # in JS # in FT
No JS 83 4 1,16 22,95 - - 2660
With JS 17 6 5,57 15,48 5 size variables 2345 315
With JS 14 5 1,48 12,07 All size variables 2335 325
With JS 9 4 5,23 12,84 All indicator variables 2411 249
With JS 11 4 1,09 11,95 All variables 2345 315  

Table 3: Shows how ∆ and computation time depend on restrictions and number of units in the fine-tune 
phase. JS = jump-start, FT = fine-tune. Farming activity 4. 

Seconds Iterations ∆, k=6 ∆, k=1 Restrictions # in JS # in FT
No JS 1546 3 4,17 33,6 - - 9984
With JS 299 4 4,2 11,34 5 size variables 8420 1564
With JS 300 4 2,29 8,08 All size variables 8457 1527
With JS 317 4 3,93 10,17 All indicator variables 8580 1404
With JS 296 4 1,97 8,43 All variables 8556 1428  

Table 4: Shows how ∆ and computation time depend on restrictions and number of units in the fine-tune 
phase. JS = jump-start, FT = fine-tune. Farming activity 10. 

Seconds Iterations ∆, k=6 ∆, k=1 Restrictions # in JS # in FT
No JS 3,5 4 6,11 37,14 - - 384
With JS 1,5 5 7,45 32,18 5 size variables 260 124
With JS 1,5 4 6,13 33,06 All size variables 253 131
With JS 1 4 8,95 30,08 All indicator variables 281 103
With JS 1,5 4 7,29 34,87 All variables 232 152  
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Table 5: Shows how ∆ and computation time depend on restrictions and number of units in the fine-tune 
phase. JS = jump-start, FT = fine-tune. Farming activity 11. 

Seconds Iterations ∆, k=6 ∆, k=1 Restrictions # in JS # in FT
No JS 9,5 5 4,1 29,44 - - 586
With JS 1,7 4 7,49 30,31 5 size variables 477 109
With JS 2,5 5 4,74 27,78 All size variables 450 136
With JS 2,3 4 3 29,82 All indicator variables 425 161
With JS 2,4 4 2,8 28,08 All variables 424 162  

Figure 2: Shows how computation time (measured in seconds) divided on number of iterations varies with 
number of units in FT, for farming activity (FA) 2, 4, 10 and 11.  
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Table 6 and 7 show how the imputed totals in FA-4 and FA-10, respectively, satisfy the restrictions on 
the 12 most important variables listed above. All the imputations were carried out using full JS and 
with k =6. Five different ways of calculating ∆ have been used. For the first scenario, all variables are 
considered equally important (that is, W=1), so that ∆ is calculated as the un-weighted sum of the 
relative differences, and only totals at the imputation class level are considered when calculating ∆ 
(that is, W’=0). For all other scenarios the weights for the 12 important variables are increased to 
W=10, i.e. these relative differences weight ten times as much as the rest in the calculation of ∆. For 
the third scenario, W’=0.1, which means that the restrictions for sub-populations (in this case, 
marginals of class and region) in calculation ∆ is included to a small extent. For the fourth and fifth, 
the W’ is increased to 0.5 and 0.9. Notice that in scenario three – five, the number of imputation 
restrictions is increased to 840 from 84 in the first two scenarios.   

The results indicate that there is a limit on the number of restrictions that can be satisfied in any given 
imputation class. Moreover, the variables with skewed distributions are more likely to have problems. 
Here a skewed distribution is indicated by a small number (or proportion) of donors with positive 
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values. It follows that in practice one may need to give priority to certain imputation restrictions, for 
instance the variables of the most interest or the restrictions that have the lowest variances. 

Table 6: Table of results from five different scenarios of RENI compared to restriction, for the important 
variables. The second column shows number of donors within the imputation class that has a value larger 
than 0. W = variable weight, W’ = marginal weight.  Farming activity 4. 

Variable Donors > 0 Restriction W=1, W'=0 W=10, W'=0 W=10, W'=0.1 W=10, W'=0.5 W=10, W'=0.9
leasing 615 107 725 189 0,00 0,00 0,00 0,00 0,00
leasing 1 201 141 312 208 0,00 0,00 0,00 0,00 -0,01
leasing 2 26 9 510 617     -0,01 0,00 0,00 0,01 0,11
m_build 2745 245 711 424 0,00 0,00 0,00 0,00 0,02
i_fixed 388 160 950 792 0,00 0,00 0,00 0,00 -0,02
i_build 351 328 141 992 0,00 0,00 0,00 0,00 0,00
m_tractor 2517 139 840 725 0,00 0,00 0,00 0,00 0,00
m_car 561 12 133 275   0,00 0,00 0,00 0,00 0,04
m_mach 2526 115 488 841 0,00 0,00 0,00 0,00 0,00
mach_new 707 143 487 579 0,00 0,00 0,00 0,00 0,01
mach_used 275 52 354 873   0,00 0,00 0,00 0,00 -0,02
sale_mach 257 28 362 849   0,00 0,00 0,00 0,01 0,06  

Table 7: Table of results from five different scenarios of RENI compared to restriction, for the important 
variables. The second column shows number of donors within the imputation class that has a value larger 
than 0. W = variable weight, W’ = marginal weight.  Farming activity 10. 

Variable Donors > 0 Restriction W=1, W'=0 W=10, W'=0 W=10, W'=0.1 W=10, W'=0.5 W=10, W'=0.9
leasing 59 4 831 568     -0,02 0,00 0,00 0,00 0,23
leasing 1 20 5 166 386     0,05 0,06 0,05 0,12 0,27
leasing 2 4 622 092        -0,04 -0,04 -0,04 -0,04 -0,04
m_build 198 7 107 608     0,00 0,00 0,00 0,00 -0,04
i_fixed 20 8 041 181     -0,04 -0,05 0,09 0,11 0,14
i_build 28 16 960 322   0,09 0,00 0,03 0,07 0,19
m_tractor 215 5 356 895     0,00 0,00 0,00 0,02 0,20
m_car 91 1 083 723     -0,11 0,00 0,00 0,00 0,00
m_mach 206 4 449 857     0,00 0,01 0,00 0,07 0,15
mach_new 58 6 385 295     0,00 -0,01 0,00 0,14 0,17
mach_used 18 1 078 862     0,05 0,01 -0,01 0,00 0,01
sale_mach 33 738 748        -0,26 0,00 0,05 0,21 0,25  

3.2 Co-variances of the imputed values 
 It is essential that the imposed restrictions do not damage the consistency property of the NNI for the 
estimation of the finite population distributions. In particular, with regard to the second goal, the 
imputed data should contain correct co-variances among the survey variables. 

We now compare the variances and co-variances in the statistical register obtained by the RENI and 
the corresponding estimates by the weighting method. Table 8 shows that the correlations by and large 
are very close under the two approaches in FA-10, and the situation is very similar in the other 
imputation classes for which the details are omitted due to the limit of space. The same conclusion 
holds in terms of the coefficient of variation under the two approaches (Table 9).  

For the co-variation among indicator variables, we look at their cross-tables. Table 10 show these are 
very close under the two approaches in FA-10. Again, the situation is very similar in the other 
imputation classes such that the details are omitted.  



 9

Table 8: Co-variances for RENI (above diagonal) and weighting (under diagonal). Farming activity 10. 

leasing leasing1 leasing2 m_build i_fixed i_build m_tractor m_car m_mach mach_new mach_used sale_mach
leasing 0,59 0,24 0,25 0,44 0,37 0,30 0,25 0,37 -0,03 0,12 0,07
leasing1 0,59 0,43 0,13 0,47 0,44 0,14 0,10 0,25 -0,01 0,17 0,10
leasing2 0,25 0,44 0,12 0,05 0,16 0,11 0,09 0,21 -0,02 -0,02 -0,02
m_build 0,25 0,14 0,14 0,07 0,08 0,35 0,59 0,40 0,13 0,23 0,07
i_fixed 0,45 0,47 0,05 0,06 0,80 0,05 -0,02 0,14 -0,03 -0,02 -0,02
i_build 0,37 0,42 0,15 0,08 0,79 0,07 -0,02 0,17 -0,03 0,00 -0,02
m_tractor 0,28 0,13 0,12 0,35 0,05 0,08 0,42 0,53 0,17 0,13 0,11
m_car 0,21 0,09 0,10 0,61 -0,01 -0,01 0,47 0,49 0,11 0,15 0,11
m_mach 0,35 0,25 0,24 0,41 0,16 0,18 0,57 0,52 0,28 0,18 0,30
mach_new -0,01 -0,02 -0,02 0,15 -0,03 -0,03 0,20 0,15 0,32 0,11 0,60
mach_used 0,11 0,18 -0,01 0,27 -0,02 0,00 0,13 0,16 0,17 0,15 0,06
sale_mach 0,09 0,11 -0,02 0,07 -0,01 -0,02 0,12 0,13 0,32 0,56 0,06  

Table 9: Coefficient of variation for RENI and weighting, for all farming activities. 

R-NNI Weighting R-NNI Weighting R-NNI Weighting R-NNI Weighting
leasing 0,0020 0,0019 0,0003 0,0003 0,0097 0,0097 0,0047 0,0047
leasing1 0,0029 0,0029 0,0006 0,0006 0,0191 0,0208 0,0098 0,0095
leasing2 0,0153 0,0149 0,0018 0,0018 0,0836 0,0823 0,0229 0,0226
m_build 0,0010 0,0010 0,0002 0,0001 0,0084 0,0082 0,0025 0,0025
i_fixed 0,0046 0,0046 0,0009 0,0008 0,0173 0,0164 0,0090 0,0094
i_build 0,0030 0,0030 0,0009 0,0009 0,0164 0,0166 0,0079 0,0073
m_tractor 0,0007 0,0007 0,0001 0,0001 0,0043 0,0043 0,0023 0,0023
m_car 0,0012 0,0012 0,0004 0,0004 0,0091 0,0091 0,0048 0,0045
m_mach 0,0010 0,0010 0,0001 0,0001 0,0053 0,0053 0,0028 0,0031
mach_new 0,0025 0,0026 0,0004 0,0003 0,0132 0,0117 0,0088 0,0081
mach_used 0,0036 0,0034 0,0005 0,0005 0,0237 0,0250 0,0066 0,0067
sale_mach 0,0031 0,0031 0,0006 0,0006 0,0225 0,0227 0,0126 0,0134

FA = 2 FA = 4 FA = 10 FA = 11

 

Table 10: Cross-table for the indicator variable of the important variables for the RENI (above the 
diagonal) and weighting method (under the diagonal). Farming activity 10. 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
I_leasing 1 14 42 2 54 50 6 8 48 12 44 56 0 33 23 48 8 6 50 5 51 1 55

0 0 328 0 328 244 84 17 311 17 311 265 63 88 240 249 79 46 282 14 314 30 298
I_leasing1 1 11 45 2 12 14 0 5 9 7 7 14 0 7 7 12 2 2 12 4 10 1 13

0 2 323 0 370 280 90 20 350 22 348 307 63 114 256 285 85 50 320 15 355 30 340
I_leasing2 1 2 54 2 12 2 0 0 2 2 0 2 0 2 0 0 2 0 2 0 2 0 2

0 0 325 0 368 292 90 25 357 27 355 319 63 119 263 297 85 52 330 19 363 31 351
I_m_build 1 47 9 13 0 2 0 21 273 28 266 267 27 108 186 262 32 45 249 17 277 26 268

0 252 73 286 82 298 82 4 86 1 89 54 36 13 77 35 55 7 83 2 88 5 85
I_i_fixed 1 8 48 5 8 0 1 22 277 9 16 22 3 16 9 17 8 1 24 1 24 0 25

0 17 309 20 348 25 355 3 79 20 339 299 60 105 254 280 79 51 308 18 341 31 328
I_i_build 1 12 44 8 5 1 0 29 270 12 13 29 0 7 22 26 3 3 26 0 29 1 28

0 19 306 23 345 30 349 2 80 20 337 292 63 114 241 271 84 49 306 19 336 30 325
I_m_tractor 1 56 0 13 0 2 0 266 33 24 1 31 0 112 209 262 59 44 277 14 307 31 290

0 263 62 306 62 317 62 53 29 295 61 288 62 9 54 35 28 8 55 5 58 0 63
I_m_car 1 26 30 5 8 2 0 89 210 12 13 7 24 97 222 102 19 13 108 6 115 4 117

0 77 248 98 270 101 278 14 68 91 265 96 254 6 56 195 68 39 224 13 250 27 236
I_m_mach 1 47 9 12 1 0 1 259 40 22 3 28 3 264 55 90 13 48 249 19 278 26 271

0 248 77 283 85 295 85 36 46 273 83 267 83 31 31 205 73 4 83 0 87 5 82
I_mach_new 1 8 48 2 11 0 1 54 245 5 20 3 28 55 264 21 82 60 235 3 49 21 31

0 56 269 62 306 63 316 9 73 59 298 61 289 9 53 42 236 3 83 16 316 10 322
I_mach_used 1 3 53 4 9 0 2 14 286 2 23 2 29 14 305 5 98 16 279 6 58 3 16

0 13 312 11 357 16 364 2 80 14 342 14 336 2 60 10 268 0 86 10 307 28 337
I_sale_mach 1 4 52 2 11 0 2 23 276 0 25 1 30 30 289 6 97 26 269 21 42 4 11

0 26 299 27 341 30 350 6 76 29 327 29 321 0 62 23 255 3 83 8 309 25 340

I_leasing I_leasing1 I_leasing2 I_m_buil I_i_fixed I_i_build I_m_tractor I_m_car I_m_mach I_mach_new I_mach_used I_sale_mach
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4 Summary and discussion of future works 
Application of the RENI to the Norwegian Agriculture Survey 2006 suggests that the method is 
capable of fulfilling the triple-goal criterion for the construction of statistical registers. 

The most problematic issue that we have encountered concerns how well the imputed totals satisfy the 
imposed restrictions. A large number of restrictions can easily be obtained by method of weighting. 
However, not all the weighted totals are equally reliable. One may choose those with small 
coefficients of variation and/or those that are considered important. It may also be helpful to examine 
systematically the effective choice of imputation restrictions. For instance, given the number of 
restrictions to be imposed, which ones should be chosen in order to obtain in addition the closest 
agreement of the rest totals? 

The definition of the distance metric is another issue one might look into. For instance, what is a 
suitable balance between the absolute and relative differences? 

Partial missing/non-response is as common as unit missing/non-response. In general, a donor may not 
have exactly the same values as the observed ones for the receivers, when observations are missing 
partially. It seems natural in such a situation that the observed values of the donors should be adjusted 
before they are imputed for the receiver. Otherwise, the covariance between the variables may be 
distorted. This requires extending the NNI to partially missing data. More generally, the donor and 
receiver may not exactly match on the x-values, either. Thus, the extension may have a more general 
bearing on the methodology. 
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